
BRAJ KISHOR PRASAD, brajki@rediffmail.com,

Department of MCA, 2nd Semester

MCA CS2T07: Automata Theory

Elimination of Left Recursion and Left Factoring

Recursion

There are two types of recursion:

 Left Recursion (LR)

 Right Recursion (RR)

Left Recursion (LR): When left most symbols of RHS (Right Hand Side) is same as

left symbol in the production then we say that the production is in Left Recursion.

Example:

S S S

b S a S a

 S a

 S a

 b

The above figure or concept can be represented as ba* in notational form.

S -> S a / b

Left Symbol Left Most Symbol of RHS

mailto:brajki@rediffmail.com

Right Recursion (RR): When right most symbols of RHS (Right Hand Side) is same

as left symbol in the production then we say that the production is in Right Recursion.

Example:

S S S

b a S a S

 a S

 a S

 b

The above figure or concept can be represented as a*b in notational form.

S -> a S / b

Left Symbol Right Most Symbol of RHS

How to eliminate Left Recursion from the production?

Example 1:

E -> E + T / T

Example 2:

T -> T * F | F

Left Recursive Production

S -> S a / b

S -> ba*

S’ -> a* (Let)

Therefore,

S -> bS’

S’ -> aS’ / ∈

E -> E + T / T
S -> S a / b

S -> S a/b

S -> bs’

S’ -> aS’ / ∈

E -> E +T/T

E -> TE’

E’ -> +TE’ / ∈

T -> T *F / F
S -> S a / b

S -> S a/b

S -> bs’

S’ -> aS’ / ∈

T -> T *F/F

T -> FT’

T’ -> *FT’ / ∈

Left Factoring:

Left Factoring converts non-deterministic grammar into deterministic grammar.

Example 1:

S -> aB1/aB2/aB3/aB4

S -> aS’

S -> B1/B2/B3/B4

Example 2:

S -> aSSdS

 /aSaSd

 /add

 /d

S -> aS’/d

S’ -> SSdS

 /SaSd

 /dd

S -> aS’/d

S’’ -> SS”

S” -> SdS

 /aSd

 /dd

Example 2: Find the First() and Follow() of the following grammar.

E -> E + T | T

T -> T * F | F

F -> (E) / id

For LL (1) parsing, the grammar should be free of left recursion and should be left

factored. So, we eliminate them then we get the following:

E -> TE’

E’ -> +TE’ | ⋲

T -> FT’

T’ -> *FT’ | ⋲

F -> (E) | id

First() and Follow() Table

 First() Follow()

E -> TE’ {(, id} {), $}

E’ -> +TE’ | ⋲ {+, ⋲ } {), $}

T -> FT’ {(, id} {+,), $}

T’ -> *FT’ | ⋲ {*, ⋲ } {+,), $}

F -> (E) | id {(, id} {*,+,), $}

 First() Follow()

E -> TE’ { } { }

E’ -> +TE’ | ⋲ { } { }

T -> FT’ { } { }

T’ -> *FT’ | ⋲ { } { }

F -> (E) | id { } { }

