BRAJ KISHOR PRASAD, brajki@rediffmail.com,
Department of MCA, $2^{\text {nd }}$ Semester
MCA CS2T07: Automata Theory

Elimination of Left Recursion and Left Factoring

Recursion

There are two types of recursion:

- Left Recursion (LR)
- Right Recursion (RR)

Left Recursion (LR): When left most symbols of RHS (Right Hand Side) is same as left symbol in the production then we say that the production is in Left Recursion.

Example:

S
b

The above figure or concept can be represented as ba* in notational form.

Right Recursion (RR): When right most symbols of RHS (Right Hand Side) is same as left symbol in the production then we say that the production is in Right Recursion.

Example:

The above figure or concept can be represented as a*b in notational form.

How to eliminate Left Recursion from the production?

Example 1:

E -> E + T / T

Left Recursive Production

$$
\begin{aligned}
& S \text {-> S a / b } \\
& \text { S -> ba* } \\
& S^{\prime}->a^{*} \quad \text { (Let) }
\end{aligned}
$$

Therefore,
S -> bS'
S' -> aS' / E

$S \rightarrow S a / b$
$S \rightarrow b s^{\prime}$
$S^{\prime} \rightarrow a S^{\prime} / \in$

E -> E +T/T

E $->$ TE'
$E^{\prime}->+T E^{\prime} / \in$

Example 2:

$T->T$ * $\mid F$

S \rightarrow S a / b
S -> bs'
\mathbf{S}^{\prime}-> aS' $/$

$$
\begin{aligned}
& \mathrm{T}->\mathrm{T}^{*} \mathrm{~F} / \mathrm{F} \\
& \mathrm{~T}->\mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime}->\mathrm{FT}^{\prime} / \in
\end{aligned}
$$

Left Factoring:

Left Factoring converts non-deterministic grammar into deterministic grammar.

Example 1:

$$
\mathrm{S}->\mathrm{aB}_{1} / \mathrm{aB}_{2} / \mathrm{aB}_{3} / \mathrm{aB}_{4}
$$

$$
\begin{aligned}
& \text { S -> aS' } \\
& \text { S -> } B_{1} / B_{2} / B_{3} / B_{4}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \text { S -> aSSdS } \\
& \text { /aSaSd } \\
& \text { /add } \\
& \text { /d } \\
& \text { S -> aS'/d } \\
& \text { S' -> SSdS } \\
& \text { /SaSd } \\
& \text { /dd } \\
& \text { S -> aS'/d } \\
& \text { S" -> SS" } \\
& \text { S" -> SdS } \\
& \text { /aSd } \\
& \text { /dd }
\end{aligned}
$$

Example 2: Find the First() and Follow() of the following grammar.
$E->E+T \mid T$
$T \rightarrow T * F \mid F$
$F \rightarrow(E) /$ id
For LL (1) parsing, the grammar should be free of left recursion and should be left factored. So, we eliminate them then we get the following:

E -> TE'
$\mathrm{E}^{\prime}->+$ TE' $\mid \in$
T -> FT'
T' $->$ *FT' $\mid \in$
F-> (E) |id

First() and Follow() Table

	First()	Follow()
E -> TE'	\{(, id \}	\{), \$\}
E' -> +TE' \| \in	$\{+, \in\}$	\{, \$\}
T -> FT'	\{(, id \}	\{+,), \$\}
T' -> *FT' $\mid \in$	$\{*, \in\}$	$\{+$,), \$\}
$\mathrm{F}->(\mathrm{E}) \mid \mathrm{id}$	\{(, id \}	\{*, + ,), \$\}

	First()		Follow()	
E -> TE'	$\{$	$\}$	$\{$	
E' $^{\prime}->+$ TE' $\mid \in$	$\{$	$\}$	$\{$	
T $->$ FT	$\}$	$\}$		
T' $->{ }^{*}$ FT' $\mid \in$	$\{$	$\}$	$\{$	
F $->(E) \mid$ id	$\{$	$\}$	$\{$	

